
 1man7.org

Michael Kerrisk © 2013
http://man7.org/
mtk@man7.org
http://lwn.net/
mtk@lwn.net

An introduction to
Linux IPC

linux.conf.au 2013

Canberra, Australia
2013-01-30

mailto:mtk@man7.org
http://lwn.net/

 2man7.org

Goal
● Limited time!
● Get a flavor of main IPC methods

 3man7.org

Me
● Programming on UNIX & Linux since 1987
● Linux man-pages maintainer

● http://www.kernel.org/doc/man-pages/
● Kernel + glibc API

● Author of:

Further info:
http://man7.org/tlpi/

http://www.kernel.org/doc/man-pages/
http://man7.org/tlpi/

 4man7.org

You
● Can read a bit of C
● Have a passing familiarity with common syscalls

● fork(), open(), read(), write()

 5man7.org

There’s a lot of IPC
● Pipes
● FIFOs
● Pseudoterminals
● Sockets

● Stream vs Datagram (vs Seq.
packet)

● UNIX vs Internet domain

● POSIX message queues
● POSIX shared memory
● POSIX semaphores

● Named, Unnamed

● System V message queues
● System V shared memory
● System V semaphores

● Shared memory mappings
● File vs Anonymous

● Cross-memory attach
● proc_vm_readv() / proc_vm_writev()

● Signals
● Standard, Realtime

● Eventfd
● Futexes
● Record locks
● File locks
● Mutexes
● Condition variables
● Barriers
● Read-write locks

 6man7.org

It helps to classify
● Pipes
● FIFOs
● Pseudoterminals
● Sockets

● Stream vs Datagram (vs Seq.
packet)

● UNIX vs Internet domain

● POSIX message queues
● POSIX shared memory
● POSIX semaphores

● Named, Unnamed

● System V message queues
● System V shared memory
● System V semaphores

● Shared memory mappings
● File vs Anonymous

● Cross-memory attach
● proc_vm_readv() / proc_vm_writev()

● Signals
● Standard, Realtime

● Eventfd
● Futexes
● Record locks
● File locks
● Mutexes
● Condition variables
● Barriers
● Read-write locks

 7man7.org

It helps to classify
● Pipes
● FIFOs
● Pseudoterminals
● Sockets

● Stream vs Datagram (vs Seq.
packet)

● UNIX vs Internet domain

● POSIX message queues
● POSIX shared memory
● POSIX semaphores

● Named, Unnamed

● System V message queues
● System V shared memory
● System V semaphores

● Shared memory mappings
● File vs Anonymous

● Cross-memory attach
● proc_vm_readv() / proc_vm_writev()

● Signals
● Standard, Realtime

● Eventfd
● Futexes
● Record locks
● File locks
● Mutexes
● Condition variables
● Barriers
● Read-write locks

Communication

Synchronization
Signals

 8man7.org

Communication

 9man7.org

Synchronizatoin

 10man7.org

What we’ll cover
Yes

Maybe

 11man7.org

What we’ll cover
Yes

Maybe

 12man7.org

What is not covered
● Signals

● Can be used for communication and sync, but poor for both

● System IPC
● Similar in concept to POSIX IPC
● But interface is terrible!
● Use POSIX IPC instead

● Thread sync primitives
● Mutexes, condition vars, barriers, R/W locks
● Can use process shared, but rare (and nonportable)

● Futexes
● Very low level
● Used to implement POSIX sems, mutexes, condvars

● Pseudoterminals

Specialized use cases

 13man7.org

Communication
techniques

 14man7.org

Pipes

 15man7.org

Pipes

ls | wc -l

 16man7.org

Pipes
● Pipe == byte stream buffer in kernel

● Sequential (can’t lseek())
● Multiple readers/writers difficult

● Unidirectional
● Write end + read end

 17man7.org

Creating and using pipe
● Created using pipe():

int filedes[1];
pipe(filedes);

...

write(filedes[1], buf, count);
read(filedes[0], buf, count);

 18man7.org

Sharing a pipe
● Pipes are anonymous

● No name in file system

● How do two processes share a pipe?

 19man7.org

Sharing a pipe

int filedes[2];

pipe(filedes);

child_pid = fork();

fork() duplicates parent’s
file descriptors

 20man7.org

Sharing a pipe

int filedes[2];

pipe(filedes);

child_pid = fork();
if (child_pid == 0) {
 close(filedes[1]);
 /* Child now reads */
} else {
 close(filedes[0]);
 /* Parent now writes */
}

(error checking omitted!)

 21man7.org

Closing unused file descriptors
● Parent and child must close unused descriptors

● Necessary for correct use of pipes!

● close() write end
● read() returns 0 (EOF)

● close() read end
● write() fails with EPIPE error + SIGPIPE signal

 22man7.org

// http://man7.org/tlpi/code/online/dist/pipes/simple_pipe.c.html

// Create pipe, create child, parent writes argv[1] to pipe, child reads

 pipe(pfd); /* Create the pipe */

 switch (fork()) {

 case 0: /* Child - reads from pipe */

 close(pfd[1]); /* Write end is unused */

 for (;;) { /* Read data from pipe, echo on stdout */

 numRead = read(pfd[0], buf, BUF_SIZE);

 if (numRead <= 0) break; /* End-of-file or error */

 write(STDOUT_FILENO, buf, numRead);

 }

 write(STDOUT_FILENO, "\n", 1);

 close(pfd[0]);

 ...

 default: /* Parent - writes to pipe */

 close(pfd[0]); /* Read end is unused */

 write(pfd[1], argv[1], strlen(argv[1]));

 close(pfd[1]); /* Child will see EOF */

 ...

 }

http://man7.org/tlpi/code/online/dist/pipes/simple_pipe.c.html

 23man7.org

I/O on pipes
● read() blocks if pipe is empty
● write() blocks if pipe is full
● Writes <= PIPE_BUF guaranteed to be atomic

● Multiple writers > PIPE_BUF may be interleaved

● POSIX: PIPE_BUF at least 512B

● Linux: PIPE_BUF is 4096B

● Can use dup2() to connect filters via a pipe
● http://man7.org/tlpi/code/online/dist/pipes/pipe_ls_wc.c.html

http://man7.org/tlpi/code/online/dist/pipes/pipe_ls_wc.c.html

 24man7.org

Pipes have limited capacity
● Limited capacity

● If pipe fills, write() blocks
● Before Linux 2.6.11: 4096 bytes
● Since Linux 2.6.11: 65,536 bytes
● Apps should be designed not to care about capacity

– But, Linux has fcntl(fd, F_SETPIPE_SZ, size)
● (not portable)

 25man7.org

FIFOs
(named pipes)

 26man7.org

FIFO (named pipe)
● (Anonymous) pipes can only be used by related

processes
● FIFOs == pipe with name in file system
● Creation:

● mkfifo(pathname, permissions)

● Any process can open and use FIFO
● I/O is same as for pipes

 27man7.org

Opening a FIFO
● open(pathname, O_RDONLY)

● Open read end

● open(pathname, O_WRONLY)
● Open write end

● open() locks until other end is opened
● Opens are synchronized
● open(pathname, O_RDONLY | O_NONBLOCK) can

be useful

 28man7.org

POSIX
Message Queues

 29man7.org

Highlights of POSIX MQs
● Message-oriented communication

● Receiver reads messages one at a time
– No partial or multiple message reads

● Unlike pipes, multiple readers/writers can be useful

● Messages have priorities
● Delivered in priority order

● Message notification feature

 30man7.org

POSIX MQ API
● Queue management (analogous to files)

● mq_open(): open/create MQ, set attributes
● mq_close(): close MQ
● mq_unlink(): remove MQ pathname

● I/O:
● mq_send(): send message
● mq_receive(): receive message

● Other:
● mq_setattr(), mq_getattr(): set/get MQ attributes
● mq_notify(): request notification of msg arrival

 31man7.org

Opening a POSIX MQ
● mqd = mq_open(name, flags [, mode, &attr]);
● Open+create new MQ / open existing MQ
● name has form /somename

● Visible in a pseudo-filesystem

● Returns mqd_t, a message queue descriptor
● Used by rest of API

 32man7.org

Opening a POSIX MQ
● mqd = mq_open(name, flags [, mode, &attr]);
● flags (analogous to open()):

● O_CREAT – create MQ if it doesn’t exist

● O_EXCL – create MQ exclusively

● O_RDONLY, O_WRONLY, O_RDWR – just like file open

● O_NONBLOCK – non-blocking I/O

● mode sets permissions
● &attr: attributes for new MQ

● NULL gives defaults

 33man7.org

Opening a POSIX MQ
● Examples:

 // Create new MQ, exclusive,
 // for writing
 mqd = mq_open("/mymq",
 O_CREAT| O_EXCL | O_WRONLY,
 0600, NULL);

 // Open existing queue for reading
 mqd = mq_open("/mymq", O_RDONLY);

 34man7.org

Unlink a POSIX MQ
● mq_unlink(name);
● MQs are reference-counted

● ==> MQ removed only after all users have closed

 35man7.org

Nonblocking I/O on POSIX MQs
● Message ques have a limited capacity

● Controlled by attributes

● By default:
● mq_receive() blocks if no messages in queue
● mq_send() blocks if queue is full

● O_NONBLOCK:
● EAGAIN error instead of blocking

● Useful for emptying queue without blocking

 36man7.org

Sending a message
● mq_send(mqd, msg_ptr, msg_len, msgprio);

● mqd – MQ descriptor
● msg_ptr – pointer to bytes forming message
● msg_len – size of message
● msgprio – priority

– non-negative integer
– 0 is lowest priority

 37man7.org

Sending a message
● mq_send(mqd, msg_ptr, msg_len, msgprio);
● Example:

mqd_t mqd;
mqd = mq_open("/mymq",
 O_CREAT | O_WRONLY,
 0600, NULL);
char *msg = "hello world";
mq_send(mqd, msg, strlen(msg), 0);

http://man7.org/tlpi/code/online/dist/pmsg/pmsg_send.c.html

http://man7.org/tlpi/code/online/dist/pmsg/pmsg_send.c.html

 38man7.org

Receiving a message
● nb = mq_receive(mqd, msg_ptr, msg_len, &prio);

● mqd – MQ descriptor
● msg_ptr – points to buffer that receives message
● msg_len – size of buffer
● &prio – receives priority
● nb – returns size of message (bytes)

 39man7.org

Receiving a message
● nb = mq_receive(mqd, msg_ptr, msg_len, &prio);
● Example:

const int BUF_SIZE = 1000;
char buf[BUF_SIZE];
unsigned int prio;
...
mqd = mq_open("/mymq", O_RDONLY);
nbytes = mq_receive(mqd, buf,
 BUF_LEN, &prio);

http://man7.org/tlpi/code/online/dist/pmsg/pmsg_receive.c.html

http://man7.org/tlpi/code/online/dist/pmsg/pmsg_receive.c.html

 40man7.org

POSIX MQ notifications
● mq_notify(mqd, notification);
● One process can register to receive notification
● Notified when new msg arrives on empty queue

● & only if another process is not doing mq_receive()

● notification says how caller should be notified
● Send me a signal
● Start a new thread (see mq_notify(3) for example)

● One-shot; must re-enable
● Do so before emptying queue!

 41man7.org

POSIX MQ attributes
struct mq_attr {
 long mq_flags; // MQ description flags
 // 0 or O_NONBLOCK
 // [mq_getattr(), mq_setattr()]
 long mq_maxmsg; // Max. # of msgs on queue
 // [mq_open(), mq_getattr()]
 long mq_msgsize; // Max. msg size (bytes)
 // [mq_open(), mq_getattr()]
 long mq_curmsgs; // # of msgs currently in queue
 // [mq_getattr()]
};

 42man7.org

POSIX MQ details
● Per-process and system-wide limits govern

resource usage
● Can mount filesystem to obtain info on MQs:

● See mq_overview(7)

mkdir /dev/mqueue
mount -t mqueue none /dev/mqueue
ls /dev/mqueue
mymq
cat /dev/mqueue/mymq
QSIZE:129 NOTIFY:2 SIGNO:0 NOTIFY_PID:8260

 43man7.org

Shared memory

 44man7.org

Shared memory
● Processes share same physical pages of

memory
● Communication == copy data to memory
● Efficient; compare

● Data transfer: user space ==> kernel ==> user space
● Shared memory: single copy in user space

● But, need to synchronize access...

 45man7.org

Shared memory
● Processes share

physical pages
of memory

 46man7.org

Shared memory
● We’ll cover three types:

● Shared anonymous mappings
– related processes

● Shared file mappings
– unrelated processes, backed by file in traditional filesystem

● POSIX shared memory
– unrelated processes, without use of traditional filesystem

 47man7.org

mmap()
● Syscall used in all three shmem types
● Rather complex:

● void *mmap(void *daddr, size_t len, int prot,
int flags, int fd, off_t offset);

 48man7.org

mmap()
● addr = mmap(daddr, len, prot, flags, fd, offset);
● daddr – choose where to place mapping;

● Best to use NULL, to let kernel choose
● len – size of mapping
● prot – memory protections (read, write, exec)
● flags – control behavior of call

● MAP_SHARED, MAP_ANONYMOUS
● fd – file descriptor for file mappings
● offset – starting offset for mapping from file
● addr – returns address used for mapping

 49man7.org

Using shared memory
● addr = mmap(daddr, len, prot, flags, fd, offset);

● addr looks just like
any C pointer

● But, changes to region
seen by all process
that map it

 50man7.org

Shared anonymous
mapping

 51man7.org

Shared anonymous mapping
● Share memory between related processes
● mmap() fd and offset args unneeded

● Allocates zero-initialized block of length bytes
● Parent and child share memory at addr:length

● http://man7.org/tlpi/code/online/dist/mmap/anon_mmap.c.html

addr = mmap(NULL, length,
 PROT_READ | PROT_WRITE,
 MAP_SHARED | MAP_ANONYMOUS,
 -1, 0);
pid = fork();

http://man7.org/tlpi/code/online/dist/mmap/anon_mmap.c.html

 52man7.org

Shared anonymous mapping

addr = mmap(NULL, length,
 PROT_READ | PROT_WRITE,
 MAP_SHARED | MAP_ANONYMOUS,
 -1, 0);
pid = fork();

 53man7.org

Shared file
mapping

 54man7.org

Shared file mapping
● Share memory between unrelated processes,

backed by file
● fd = open(...); addr = mmap(..., fd, offset);

 55man7.org

Shared file mapping
● fd = open(...); addr = mmap(..., fd, offset);
● Contents of memory initialized from file
● Updates to memory automatically carried

through to file (“memory-mapped I/O”)
● All processes that map same region of file share

same memory

 56man7.org

Shared file mapping

 57man7.org

Shared file mapping

fd = open(pathname, O_RDWR);

addr = mmap(NULL, length,
 PROT_READ | PROT_WRITE,
 MAP_SHARED,
 fd, 0);
...
close(fd); /* No longer need 'fd' */

Updates are: visible to other process sharing
mapping; and carried through to file

 58man7.org

POSIX
shared memory

 59man7.org

POSIX shared memory
● Share memory between unrelated process,

without creating file in (traditional) filesystem
● Don’t need to create a file
● Avoid file I/O overhead

 60man7.org

POSIX SHM API
● Object management

● shm_open(): open/create SHM object
● mmap(): map SHM object
● shm_unlink(): remove SHM object pathname

● Operations on SHM object via fd returned by
shm_open():
● fstat(): retrieve info (size, ownership, permissions)
● ftruncate(): change size
● fchown(): fchmod(): change ownership, permissions

 61man7.org

Opening a POSIX SHM object
● fd = shm_open(name, flags, mode);
● Open+create new / open existing SHM object
● name has form /somename

● Can be seen in dedicated tmpfs at /dev/shm

● Returns fd, a file descriptor
● Used by rest of API

 62man7.org

Opening a POSIX SHM object
● fd = shm_open(name, flags, mode);
● flags (analogous to open()):

● O_CREAT – create SHM if it doesn’t exist

● O_EXCL – create SHM exclusively

● O_RDONLY, O_RDWR – indicates type of access

● O_TRUNC – truncate existing SHM object to zero
length

● mode sets permissions
● MBZ if O_CREAT not specified

 63man7.org

Create and map new SHM object
● Create and map a new SHM object of size bytes:

fd = shm_open("/myshm",
 O_CREAT | O_EXCL | O_RDWR, 0600);

ftruncate(fd, size); // Set size of object

addr = mmap(NULL, size,
 PROT_READ | PROT_WRITE,
 MAP_SHARED, fd, 0);

 64man7.org

Map existing SHM object
● Map an existing SHM object of unknown size:

fd = shm_open("/myshm", O_RDWR, 0); // No O_CREAT

// Use object size as length for mmap()
struct stat sb;
fstat(fd, &sb);

addr = mmap(NULL, sb.st_size,
 PROT_READ | PROT_WRITE,
 MAP_SHARED, fd, 0);

http://man7.org/tlpi/code/online/dist/pshm/pshm_read.c.html

 65man7.org

● How to prevent two process updating
shared memory at the same time?

But...

 66man7.org

Synchronization

 67man7.org

Synchronization
● Synchronize access to a shared resource

● Shared memory
– Semaphores

● File
– File locks

 68man7.org

POSIX
semaphores

 69man7.org

POSIX semaphores
● Integer maintained inside kernel
● Kernel blocks attempt to decrease value below

zero
● Two fundamental operations:

● sem_post(): increment by 1
● sem_wait(): decrement by 1

– May block

 70man7.org

POSIX semaphores
● Semaphore represents a shared resource
● E.g., N shared identical resources ==> initial

value of semaphore is N
● Common use: binary value

● Single resource (e.g., shared memory)

 71man7.org

Unnames and named semaphores
● Two types of POSIX semaphore:

● Unnamed
– Embedded in shared memory

● Named
– Independent, named objects

 72man7.org

Unnamed semaphores API
● sem_init(semp, pshared, value): initialize

semaphore pointed to by semp to value
● sem_t *semp
● pshared: 0, thread sharing; != 0, process sharing

● sem_post(semp): add 1 to value
● sem_wait(semp): subtract 1 from value
● sem_destroy(semp): free semaphore, release

resources back to system
● Must be no waiters!

 73man7.org

Unnamed semaphores example
● Two processes, writer and reader
● Sending data through POSIX shared memory
● Two unnamed POSIX semaphores inside shm

enforce alternating access to shm

 74man7.org

Unnamed semaphores example

 75man7.org

Header file

#define BUF_SIZE 1024

struct shmbuf { // Buffer in shared memory
 sem_t wsem; // Writer semaphore
 sem_t rsem; // Reader semaphore
 int cnt; // Number of bytes used in 'buf'
 char buf[BUF_SIZE]; // Data being transferred
}

 76man7.org

Writer
fd = shm_open(SHM_PATH, O_CREAT|O_EXCL|O_RDWR, OBJ_PERMS);
ftruncate(fd, sizeof(struct shmbuf));
shmp = mmap(NULL, sizeof(struct shmbuf),
 PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

sem_init(&shmp->rsem, 1, 0);
sem_init(&shmp->wsem, 1, 1); // Writer gets first turn

for (xfrs = 0, bytes = 0; ; xfrs++, bytes += shmp->cnt) {
 sem_wait(&shmp->wsem); // Wait for our turn
 shmp->cnt = read(STDIN_FILENO, shmp->buf, BUF_SIZE);
 sem_post(&shmp->rsem); // Give reader a turn

 if (shmp->cnt == 0) // EOF on stdin?
 break;
}
sem_wait(&shmp->wsem); // Wait for reader to finish

// Clean up

 77man7.org

Reader
fd = shm_open(SHM_PATH, O_RDWR, 0);
shmp = mmap(NULL, sizeof(struct shmbuf),
 PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

for (xfrs = 0, bytes = 0; ; xfrs++) {
 sem_wait(&shmp->rsem); // Wait for our turn */

 if (shmp->cnt == 0) // Writer encountered EOF */
 break;
 bytes += shmp->cnt;

 write(STDOUT_FILENO, shmp->buf, shmp->cnt) != shmp->cnt);
 sem_post(&shmp->wsem); // Give writer a turn */
}

sem_post(&shmp->wsem); // Let writer know we're finished

 78man7.org

Named semaphores API
● Object management

● sem_open(): open/create semaphore
● sem_unlink(): remove semaphore pathname

 79man7.org

Opening a POSIX semaphore
● semp = sem_open(name, flags [, mode, value]);
● Open+create new / open existing semaphore
● name has form /somename

● Can be seen in dedicated tmpfs at /dev/shm

● Returns sem_t *, reference to semaphore
● Used by rest of API

 80man7.org

Opening a POSIX semaphore
● semp = sem_open(name, flags [, mode, value]);
● flags (analogous to open()):

● O_CREAT – create SHM if it doesn’t exist

● O_EXCL – create SHM exclusively

● If creating new semaphore:
● mode sets permissions
● value initializes semaphore

 81man7.org

Sockets

 82man7.org

Sockets
● Big topic
● Just a high-level view
● Some notable features when running as IPC

 83man7.org

Sockets
● “A socket is endpoint of communication...”

● ... you need two of them

● Bidirectional
● Created via:

● fd = socket(domain, type, protocol);

 84man7.org

Socket domains
● Each socket exists in a domain
● Domain determines:

● Method of identifying socket (“address”)
● “Range” of communication

– Processes on a single host
– Across a network

 85man7.org

Common socket domains
● UNIX domain (AF_UNIX)

● Communication on single host
● Address == file system pathname

● IPv4 domain (AF_INET)
● Communication on IPv4 network
● Address = IPv4 address (32 bit) + port number

● IPv6 domain (AF_INET6)
● Communication on IPv6 network
● Address = IPv6 address (128 bit) + port number

 86man7.org

Socket type
● Determines semantics of communication
● Two main types available in all domains:

● Stream (SOCK_STREAM)

● Datagram (SOCK_DGRAM)

● UNIX domain (on Linux) also provides
● Sequential packet (SOCK_SEQPACKET)

 87man7.org

Stream sockets
● SOCK_STREAM

● Byte stream
● Connection-oriented

● Like a two-party phone call

● Reliable == data arrives “intact” or not at all
● Intact:

● In order
● Unduplicated

● Internet domain: TCP protocol

 88man7.org

Datagram sockets
● SOCK_DGRAM

● Message-oriented
● Connection-less

● Like a postal system

● Unreliable; messages may arrive:
● Duplicated
● Out of order
● Not at all

● Internet domain: UDP protocol

 89man7.org

Sequential packet sockets
● SOCK_SEQPACKET

● Midway between stream and datagram sockets
● Message-oriented
● Connection-oriented
● Reliable

● UNIX domain
● In INET domain, only with SCTP protocol

 90man7.org

Stream sockets API

 91man7.org

Stream sockets API

 92man7.org

Stream sockets API

 93man7.org

Stream sockets API
● socket(SOCK_STREAM) – create a socket
● Passive socket:

● bind() – assign address to socket
● listen() – specify size of incoming connection queue
● accept() – accept connection off incoming queue

● Active socket:
● connect() – connect to passive socket

● I/O:
● write(), read(), close()
● send(), recv() – socket specific flags

 94man7.org

Datagram sockets API

 95man7.org

Datagram sockets API
● socket(SOCK_DGRAM) – create socket
● bind() – assign address to socket
● sendto() – send datagram to an address
● recvfrom() – receive datagram and address of

sender
● close()

 96man7.org

Sockets: noteworthy points
● Bidirectional communication
● UNIX domain datagram sockets are reliable
● UNIX domain sockets can pass file descriptors
● Internet domain sockets are only method for

network communication
● UDP sockets allow broadcast / multicast of

datagrams
● socketpair()

● UNIX domain
● Bidirectional pipe

 97man7.org

Other criteria affecting
choice of an

IPC mechanism

 98man7.org

Criteria for selecting an IPC mechanism
● The obvious

● Consistency with application design
● Functionality

● Let’s look at some other criteria

 99man7.org

IPC IDs and handles
● Each IPC object has:

● ID – the method used to identify an object
● Handle – the reference used in a process to access

an open object

 100man7.org

IPC IDs and handles

 101man7.org

File descriptor handles
● Some handles are file descriptors
● File descriptors can be multiplexed via poll() /

select() /epoll
● Sockets, pipes, FIFOs
● On Linux, POSIX MQ descriptors are file descriptors
● One good reason to avoid System V message

queues

 102man7.org

IPC access permissions
● How is access to IPC controlled?
● Possibilities

● UID/GID + permissions mask
● Related processes (via fork())
● Other

– e.g., Internet domain: application-determined

 103man7.org

IPC access permissions

 104man7.org

IPC object persistence
● What is the lifetime of an IPC object?

● Process: only as long as held open by at least one
process

● Kernel: until next reboot
– State persists even if no connected process

● Filesystem: persists across reboot
– Memory mapped file

 105man7.org

IPC object persistence

 106man7.org

Thanks! And Questions

Michael Kerrisk
mtk@man7.org
http://man7.org/tlpi

Linux man-pages project
mtk.manpages@gmail.com
http://www.kernel.org/doc/man-pages/

(No Starch Press, 2010)

(slides up soon at http://man7.org/conf/)

M
a

m
a

ku
 (

B
la

c k
 T

re
e

 F
e

r n
)

im
a

g e
 (

c)
 R

o
b

 S
u

is
te

d
n

a
t u

re
sp

ic
. c

o
m

LWN.net
mtk@lwn.net
http://lwn.net/

http://man7.org/conf/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106

