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Goal
● Limited time!
● Get a flavor of main IPC methods
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Me
● Programming on UNIX & Linux since 1987 
● Linux man-pages maintainer

● http://www.kernel.org/doc/man-pages/
● Kernel + glibc API

● Author of:

Further info:
http://man7.org/tlpi/

http://www.kernel.org/doc/man-pages/
http://man7.org/tlpi/
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You
● Can read a bit of C
● Have a passing familiarity with common syscalls

● fork(), open(), read(), write()
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There’s a lot of IPC
● Pipes
● FIFOs
● Pseudoterminals
● Sockets

● Stream vs Datagram (vs Seq. 
packet)

● UNIX vs Internet domain

● POSIX message queues
● POSIX shared memory
● POSIX semaphores

● Named, Unnamed

● System V message queues
● System V shared memory
● System V semaphores

● Shared memory mappings
● File vs Anonymous

● Cross-memory attach
● proc_vm_readv() / proc_vm_writev()

● Signals
● Standard, Realtime

● Eventfd
● Futexes
● Record locks
● File locks
● Mutexes
● Condition variables
● Barriers
● Read-write locks
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Communication



 9man7.org

Synchronizatoin
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What we’ll cover
Yes

Maybe
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What is not covered
● Signals

● Can be used for communication and sync, but poor for both

● System IPC
● Similar in concept to POSIX IPC
● But interface is terrible!
● Use POSIX IPC instead

● Thread sync primitives
● Mutexes, condition vars, barriers, R/W locks
● Can use process shared, but rare (and nonportable)

● Futexes
● Very low level
● Used to implement POSIX sems, mutexes, condvars

● Pseudoterminals

Specialized use cases
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Communication 
techniques
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Pipes
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Pipes

ls | wc -l
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Pipes
● Pipe == byte stream buffer in kernel

● Sequential (can’t lseek())
● Multiple readers/writers difficult

● Unidirectional
● Write end + read end



 17man7.org

Creating and using pipe
● Created using pipe():

int filedes[1];
pipe(filedes);

...

write(filedes[1], buf, count);
read(filedes[0], buf, count);
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Sharing a pipe
● Pipes are anonymous

● No name in file system

● How do two processes share a pipe?
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Sharing a pipe

int filedes[2];

pipe(filedes);

child_pid = fork();

fork() duplicates parent’s
file descriptors
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Sharing a pipe

int filedes[2];

pipe(filedes);

child_pid = fork();
if (child_pid == 0) {
    close(filedes[1]);
    /* Child now reads */
} else {
    close(filedes[0]);
    /* Parent now writes */
}

(error checking omitted!)
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Closing unused file descriptors
● Parent and child must close unused descriptors

● Necessary for correct use of pipes!

● close() write end
● read() returns 0 (EOF)

● close() read end
● write() fails with EPIPE error + SIGPIPE signal
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// http://man7.org/tlpi/code/online/dist/pipes/simple_pipe.c.html

// Create pipe, create child, parent writes argv[1] to pipe, child reads

    pipe(pfd);                  /* Create the pipe */

    switch (fork()) {

    case 0:                     /* Child  - reads from pipe */

        close(pfd[1]);          /* Write end is unused */

        for (;;) {              /* Read data from pipe, echo on stdout */

            numRead = read(pfd[0], buf, BUF_SIZE);

            if (numRead <= 0) break;      /* End-of-file or error */

            write(STDOUT_FILENO, buf, numRead);

        }

        write(STDOUT_FILENO, "\n", 1);

        close(pfd[0]);

        ...

    default:                     /* Parent - writes to pipe */

        close(pfd[0]);           /* Read end is unused */

        write(pfd[1], argv[1], strlen(argv[1]));

        close(pfd[1]);           /* Child will see EOF */

        ...

    }

http://man7.org/tlpi/code/online/dist/pipes/simple_pipe.c.html
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I/O on pipes
● read() blocks if pipe is empty
● write() blocks if pipe is full
● Writes <= PIPE_BUF guaranteed to be atomic

● Multiple writers > PIPE_BUF may be interleaved

● POSIX: PIPE_BUF at least 512B

● Linux: PIPE_BUF is 4096B

● Can use dup2() to connect filters via a pipe
● http://man7.org/tlpi/code/online/dist/pipes/pipe_ls_wc.c.html 

http://man7.org/tlpi/code/online/dist/pipes/pipe_ls_wc.c.html
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Pipes have limited capacity
● Limited capacity

● If pipe fills, write() blocks
● Before Linux 2.6.11: 4096 bytes
● Since Linux 2.6.11: 65,536 bytes
● Apps should be designed not to care about capacity

– But, Linux has fcntl(fd, F_SETPIPE_SZ, size)
● (not portable)
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FIFOs
(named pipes)
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FIFO (named pipe)
● (Anonymous) pipes can only be used by related 

processes
● FIFOs == pipe with name in file system
● Creation:

● mkfifo(pathname, permissions)

● Any process can open and use FIFO
● I/O is same as for pipes
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Opening a FIFO
● open(pathname, O_RDONLY)

● Open read end

● open(pathname, O_WRONLY)
● Open write end

● open() locks until other end is opened
● Opens are synchronized
● open(pathname, O_RDONLY | O_NONBLOCK) can 

be useful
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POSIX 
Message Queues
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Highlights of POSIX MQs
● Message-oriented communication

● Receiver reads messages one at a time
– No partial or multiple message reads

● Unlike pipes, multiple readers/writers can be useful

● Messages have priorities
● Delivered in priority order

● Message notification feature
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POSIX MQ API
● Queue management (analogous to files)

● mq_open(): open/create MQ, set attributes
● mq_close(): close MQ 
● mq_unlink(): remove MQ pathname

● I/O:
● mq_send(): send message
● mq_receive(): receive message

● Other:
● mq_setattr(), mq_getattr(): set/get MQ attributes
● mq_notify(): request notification of msg arrival
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Opening a POSIX MQ
● mqd = mq_open(name, flags [, mode, &attr]);
● Open+create new MQ /  open existing MQ
● name has form /somename

● Visible in a pseudo-filesystem

● Returns mqd_t, a message queue descriptor
● Used by rest of API
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Opening a POSIX MQ
● mqd = mq_open(name, flags [, mode, &attr]);
● flags (analogous to open()):

● O_CREAT – create MQ if it doesn’t exist

● O_EXCL – create MQ exclusively

● O_RDONLY, O_WRONLY, O_RDWR – just like file open

● O_NONBLOCK – non-blocking I/O

● mode sets permissions
● &attr: attributes for new MQ

● NULL gives defaults
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Opening a POSIX MQ
● Examples:

    // Create new MQ, exclusive, 
    // for writing
    mqd = mq_open("/mymq", 
              O_CREAT| O_EXCL | O_WRONLY,
              0600, NULL);

    // Open existing queue for reading
    mqd = mq_open("/mymq", O_RDONLY);
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Unlink a POSIX MQ
● mq_unlink(name);
● MQs are reference-counted 

● ==> MQ removed only after all users have closed
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Nonblocking I/O on POSIX MQs
● Message ques have a limited capacity

● Controlled by attributes

● By default:
● mq_receive() blocks if no messages in queue
● mq_send() blocks if queue is full

● O_NONBLOCK:
● EAGAIN error instead of blocking

● Useful for emptying queue without blocking



 36man7.org

Sending a message
● mq_send(mqd, msg_ptr, msg_len, msgprio);

● mqd – MQ descriptor
● msg_ptr – pointer to bytes forming message
● msg_len – size of message
● msgprio – priority

– non-negative integer
– 0 is lowest priority
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Sending a message
● mq_send(mqd, msg_ptr, msg_len, msgprio);
● Example:

mqd_t mqd;
mqd = mq_open("/mymq", 
              O_CREAT | O_WRONLY, 
              0600, NULL);
char *msg = "hello world";
mq_send(mqd, msg, strlen(msg), 0);

http://man7.org/tlpi/code/online/dist/pmsg/pmsg_send.c.html  

http://man7.org/tlpi/code/online/dist/pmsg/pmsg_send.c.html
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Receiving a message
● nb = mq_receive(mqd, msg_ptr, msg_len, &prio);

● mqd – MQ descriptor
● msg_ptr – points to buffer that receives message
● msg_len – size of buffer
● &prio – receives priority
● nb – returns size of message (bytes)
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Receiving a message
● nb = mq_receive(mqd, msg_ptr, msg_len, &prio);
● Example:

const int BUF_SIZE = 1000;
char buf[BUF_SIZE];
unsigned int prio;
...
mqd = mq_open("/mymq", O_RDONLY);
nbytes = mq_receive(mqd, buf, 
                BUF_LEN, &prio);

http://man7.org/tlpi/code/online/dist/pmsg/pmsg_receive.c.html 

http://man7.org/tlpi/code/online/dist/pmsg/pmsg_receive.c.html
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POSIX MQ notifications
● mq_notify(mqd, notification);
● One process can register to receive notification
● Notified when new msg arrives on empty queue

● & only if another process is not doing mq_receive()

● notification says how caller should be notified
● Send me a signal
● Start a new thread (see mq_notify(3) for example)

● One-shot; must re-enable
● Do so before emptying queue!
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POSIX MQ attributes
struct mq_attr {
  long mq_flags;   // MQ description flags
                   // 0 or O_NONBLOCK
                   // [mq_getattr(), mq_setattr()]
  long mq_maxmsg;  // Max. # of msgs on queue
                   // [mq_open(), mq_getattr()]
  long mq_msgsize; // Max. msg size (bytes)
                   // [mq_open(), mq_getattr()]
  long mq_curmsgs; // # of msgs currently in queue
                   // [mq_getattr()]
};
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POSIX MQ details
● Per-process and system-wide limits govern 

resource usage
● Can mount filesystem to obtain info on MQs:

● See mq_overview(7)

# mkdir /dev/mqueue
# mount -t mqueue none /dev/mqueue
# ls /dev/mqueue
mymq
# cat /dev/mqueue/mymq
QSIZE:129  NOTIFY:2  SIGNO:0  NOTIFY_PID:8260
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Shared memory
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Shared memory
● Processes share same physical pages of 

memory
● Communication == copy data to memory
● Efficient; compare

● Data transfer: user space ==> kernel ==> user space
● Shared memory: single copy in user space

● But, need to synchronize access...
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Shared memory
● Processes share 

physical pages 
of memory
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Shared memory
● We’ll cover three types:

● Shared anonymous mappings
– related processes

● Shared file mappings
– unrelated processes, backed by file in traditional filesystem

● POSIX shared memory
– unrelated processes, without use of traditional filesystem



 47man7.org

mmap()
● Syscall used in all three shmem types
● Rather complex:

● void *mmap(void *daddr, size_t len, int prot, 
int flags, int fd, off_t offset);
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mmap()
● addr = mmap(daddr, len, prot, flags, fd, offset);
● daddr – choose where to place mapping; 

● Best to use NULL, to let kernel choose
● len – size of mapping
● prot – memory protections (read, write, exec)
● flags – control behavior of call

● MAP_SHARED, MAP_ANONYMOUS
● fd – file descriptor for file mappings
● offset – starting offset for mapping from file
● addr – returns address used for mapping
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Using shared memory
● addr = mmap(daddr, len, prot, flags, fd, offset);

● addr looks just like 
any C pointer

● But, changes to region 
seen by all process 
that map it



 50man7.org

Shared anonymous 
mapping
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Shared anonymous mapping
● Share memory between related processes
● mmap() fd and offset args unneeded

● Allocates zero-initialized block of length bytes
● Parent and child share memory at addr:length

● http://man7.org/tlpi/code/online/dist/mmap/anon_mmap.c.html

addr = mmap(NULL, length, 
            PROT_READ | PROT_WRITE,
            MAP_SHARED | MAP_ANONYMOUS,
            -1, 0);
pid = fork();

http://man7.org/tlpi/code/online/dist/mmap/anon_mmap.c.html
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Shared anonymous mapping

addr = mmap(NULL, length, 
            PROT_READ | PROT_WRITE,
            MAP_SHARED | MAP_ANONYMOUS,
            -1, 0);
pid = fork();
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Shared file 
mapping
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Shared file mapping
● Share memory between unrelated processes, 

backed by file
● fd = open(...); addr = mmap(..., fd, offset);
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Shared file mapping
● fd = open(...); addr = mmap(..., fd, offset);
● Contents of memory initialized from file
● Updates to memory automatically carried 

through to file (“memory-mapped I/O”)
● All processes that map same region of file share 

same memory
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Shared file mapping
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Shared file mapping

fd = open(pathname, O_RDWR);

addr = mmap(NULL, length, 
          PROT_READ | PROT_WRITE,
          MAP_SHARED, 
          fd, 0);
...
close(fd);     /* No longer need 'fd' */

Updates are: visible to other process sharing 
mapping; and carried through to file
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POSIX
shared memory
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POSIX shared memory
● Share memory between unrelated process, 

without creating file in (traditional) filesystem
● Don’t need to create a file
● Avoid file I/O overhead
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POSIX SHM API
● Object management

● shm_open(): open/create SHM object
● mmap(): map SHM object
● shm_unlink(): remove SHM object pathname

● Operations on SHM object via fd returned by 
shm_open():
● fstat(): retrieve info (size, ownership, permissions)
● ftruncate(): change size
● fchown(): fchmod():  change ownership, permissions
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Opening a POSIX SHM object
● fd = shm_open(name, flags, mode);
● Open+create new / open existing SHM object
● name has form /somename

● Can be seen in dedicated tmpfs at /dev/shm

● Returns fd, a file descriptor
● Used by rest of API



 62man7.org

Opening a POSIX SHM object
● fd = shm_open(name, flags, mode);
● flags (analogous to open()):

● O_CREAT – create SHM if it doesn’t exist

● O_EXCL – create SHM exclusively

● O_RDONLY, O_RDWR – indicates type of access

● O_TRUNC – truncate existing SHM object to zero 
length

● mode sets permissions
● MBZ if O_CREAT not specified
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Create and map new SHM object
● Create and map a new SHM object of size bytes:

fd = shm_open("/myshm", 
              O_CREAT | O_EXCL | O_RDWR, 0600);

ftruncate(fd, size);    // Set size of object

addr = mmap(NULL, size, 
            PROT_READ | PROT_WRITE,
            MAP_SHARED, fd, 0);
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Map existing SHM object
● Map an existing SHM object of unknown size:

fd = shm_open("/myshm", O_RDWR, 0); // No O_CREAT

// Use object size as length for mmap()
struct stat sb;
fstat(fd, &sb);

addr = mmap(NULL, sb.st_size, 
            PROT_READ | PROT_WRITE, 
            MAP_SHARED, fd, 0);

http://man7.org/tlpi/code/online/dist/pshm/pshm_read.c.html
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● How to prevent two process updating
shared memory at the same time?

But...
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Synchronization
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Synchronization
● Synchronize access to a shared resource

● Shared memory
– Semaphores

● File
– File locks
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POSIX
semaphores
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POSIX semaphores
● Integer maintained inside kernel
● Kernel blocks attempt to decrease value below 

zero
● Two fundamental operations:

● sem_post(): increment by 1
● sem_wait(): decrement by 1

– May block
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POSIX semaphores
● Semaphore represents a shared resource
● E.g., N shared identical resources ==> initial 

value of semaphore is N
● Common use: binary value

● Single resource (e.g., shared memory)
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Unnames and named semaphores
● Two types of POSIX semaphore:

● Unnamed
– Embedded in shared memory

● Named
– Independent, named objects
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Unnamed semaphores API
● sem_init(semp, pshared, value): initialize 

semaphore pointed to by semp to value
● sem_t *semp
● pshared: 0, thread sharing; != 0, process sharing

● sem_post(semp): add 1 to value
● sem_wait(semp): subtract 1 from value
● sem_destroy(semp): free semaphore, release 

resources back to system
● Must be no waiters!
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Unnamed semaphores example
● Two processes, writer and reader
● Sending data through POSIX shared memory
● Two unnamed POSIX semaphores inside shm 

enforce alternating access to shm 
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Unnamed semaphores example
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Header file

#define BUF_SIZE 1024          

struct shmbuf {   // Buffer in shared memory
    sem_t wsem;         // Writer semaphore
    sem_t rsem;         // Reader semaphore
    int cnt;            // Number of bytes used in 'buf'
    char buf[BUF_SIZE]; // Data being transferred
}
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Writer
fd = shm_open(SHM_PATH, O_CREAT|O_EXCL|O_RDWR, OBJ_PERMS);
ftruncate(fd, sizeof(struct shmbuf));
shmp = mmap(NULL, sizeof(struct shmbuf),
                PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

sem_init(&shmp->rsem, 1, 0);
sem_init(&shmp->wsem, 1, 1);      // Writer gets first turn

for (xfrs = 0, bytes = 0; ; xfrs++, bytes += shmp->cnt) {
    sem_wait(&shmp->wsem);        // Wait for our turn
    shmp->cnt = read(STDIN_FILENO, shmp->buf, BUF_SIZE);
    sem_post(&shmp->rsem);        // Give reader a turn

    if (shmp->cnt == 0)           // EOF on stdin?
        break;
}
sem_wait(&shmp->wsem);       // Wait for reader to finish

// Clean up
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Reader
fd = shm_open(SHM_PATH, O_RDWR, 0); 
shmp = mmap(NULL, sizeof(struct shmbuf),
            PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); 

for (xfrs = 0, bytes = 0; ; xfrs++) {
    sem_wait(&shmp->rsem);    // Wait for our turn */

    if (shmp->cnt == 0)       // Writer encountered EOF */
        break;
    bytes += shmp->cnt;

    write(STDOUT_FILENO, shmp->buf, shmp->cnt) != shmp->cnt);
    sem_post(&shmp->wsem);    // Give writer a turn */
} 

sem_post(&shmp->wsem);   // Let writer know we're finished
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Named semaphores API
● Object management

● sem_open(): open/create semaphore
● sem_unlink(): remove semaphore pathname
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Opening a POSIX semaphore
● semp = sem_open(name, flags [, mode, value]);
● Open+create new / open existing semaphore
● name has form /somename

● Can be seen in dedicated tmpfs at /dev/shm

● Returns sem_t  *, reference to semaphore
● Used by rest of API
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Opening a POSIX semaphore
● semp = sem_open(name, flags [, mode, value]);
● flags (analogous to open()):

● O_CREAT – create SHM if it doesn’t exist

● O_EXCL – create SHM exclusively

● If creating new semaphore:
● mode sets permissions
● value initializes semaphore
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Sockets
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Sockets
● Big topic
● Just a high-level view
● Some notable features when running as IPC
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Sockets
● “A socket is endpoint of communication...”

● ... you need two of them

● Bidirectional
● Created via:

● fd = socket(domain, type, protocol);
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Socket domains
● Each socket exists in a domain
● Domain determines:

● Method of identifying socket (“address”)
● “Range” of communication

– Processes on a single host
– Across a network



 85man7.org

Common socket domains
● UNIX domain (AF_UNIX)

● Communication on single host
● Address == file system pathname

● IPv4 domain (AF_INET)
● Communication on IPv4 network
● Address = IPv4 address (32 bit) + port number

● IPv6 domain (AF_INET6)
● Communication on IPv6 network
● Address = IPv6 address (128 bit) + port number
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Socket type
● Determines semantics of communication
● Two main types available in all domains:

● Stream (SOCK_STREAM)

● Datagram (SOCK_DGRAM)

● UNIX domain (on Linux) also provides
● Sequential packet (SOCK_SEQPACKET)
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Stream sockets
● SOCK_STREAM

● Byte stream
● Connection-oriented

● Like a two-party phone call

● Reliable  == data arrives “intact” or not at all
● Intact:

● In order
● Unduplicated

● Internet domain: TCP protocol
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Datagram sockets
● SOCK_DGRAM

● Message-oriented
● Connection-less

● Like a postal system

● Unreliable; messages may arrive:
● Duplicated
● Out of order
● Not at all

● Internet domain: UDP protocol
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Sequential packet sockets
● SOCK_SEQPACKET

● Midway between stream and datagram sockets
● Message-oriented
● Connection-oriented
● Reliable

● UNIX domain
● In INET domain, only with SCTP protocol
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Stream sockets API
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Stream sockets API
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Stream sockets API
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Stream sockets API
● socket(SOCK_STREAM) – create a socket
● Passive socket:

● bind() – assign address to socket
● listen() – specify size of incoming connection queue
● accept() – accept connection off incoming queue

● Active socket:
● connect() – connect to passive socket

● I/O: 
● write(), read(), close()
● send(), recv() – socket specific flags
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Datagram sockets API
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Datagram sockets API
● socket(SOCK_DGRAM) – create socket
● bind() – assign address to socket
● sendto() – send datagram to an address
● recvfrom() – receive datagram and address of 

sender
● close()
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Sockets: noteworthy points
● Bidirectional communication
● UNIX domain datagram sockets are reliable
● UNIX domain sockets can pass file descriptors
● Internet domain sockets are only method for 

network communication
● UDP sockets allow broadcast / multicast of 

datagrams
● socketpair() 

● UNIX domain
● Bidirectional pipe
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Other criteria affecting 
choice of an

IPC mechanism
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Criteria for selecting an IPC mechanism
● The obvious

● Consistency with application design
● Functionality

● Let’s look at some other criteria
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IPC IDs and handles
● Each IPC object has:

● ID – the method used to identify an object
● Handle – the reference used in a process to access 

an open object



 100man7.org

IPC IDs and handles
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File descriptor handles
● Some handles are file descriptors
● File descriptors can be multiplexed via poll() / 

select() /epoll
● Sockets, pipes, FIFOs
● On Linux, POSIX MQ descriptors are file descriptors
● One good reason to avoid System V message 

queues
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IPC access permissions
● How is access to IPC controlled?
● Possibilities

● UID/GID + permissions mask
● Related processes (via fork())
● Other 

– e.g., Internet domain: application-determined
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IPC access permissions
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IPC object persistence
● What is the lifetime of an IPC object?

● Process: only as long as held open by at least one 
process

● Kernel: until next reboot
– State persists even if no connected process

● Filesystem: persists across reboot
– Memory mapped file
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IPC object persistence
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Thanks! And Questions

Michael Kerrisk
mtk@man7.org 
http://man7.org/tlpi

Linux man-pages project
mtk.manpages@gmail.com 
http://www.kernel.org/doc/man-pages/

(No Starch Press, 2010)

(slides up soon at http://man7.org/conf/)
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